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The Trisection Problem

THE YEAR 1931 was a year of turmoil and great change. The
United States was in the grip of a depression, with many
factories shut down, and millions of people unemployed. In
Germany, Hitler's brown-shirted Nazis were preparing to seize
power. In the Far East, Japan had begun her invasion of
China. But, one day in August, the newspapers pushed all
these world-shaking events to one side, to make room for an
exciting headline : Trisection of Angle by Euclid accom-
plished after 2500 Years. Of course they didn't mean that
Euclid had done it. Euclid had been dead all these twenty-five
hundred years, although his geometry textbook lived on. The
newspapers meant that at last the angle had been trisected by
the methods of Euclid. The man who did it, the papers told
us, was the Very Reverend Jeremiah Joseph Callahan, Presi-
dent of Duquesne University. Reporters rushed to interview
him, to find out how he had cracked the problem that had
baffled mathematicians for so many centuries. The United
Press scooped its competitors by running a first-hand account
written and signed by Father Callahan himself.

But a shadow fell across Father Callahan's accomplishment.
The newspapers reported that other mathematicians were
skeptical. Were they merely being cautious, waiting to see the
details of Callahan's method before they would pass judgment
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on it? No, they were not being cautious. In fact, many
expressed their opinions freely. Although Callahan had not
yet published his construction, they said that they were sure it
would prove to be wrong. Were they being pig-headed, then,
unwilling to admit that somebody had succeeded where they
themselves had failed? No, they were 'not pig-headed. The
reporters found no signs of indignation, hurt pride or profes-
sional jealousy. The mathematicians patiently explained to
the reporters that the problem of trisecting an angle was not
an unsolved problem waiting for somebody with daring and
imagination' to tackle it. This problem had been solved in
1837. But the solution was a proof that it is impossible to
trisect an angle by the methods of Euclid. That is why they
were sure that Father Callahan was wrong.

The shadow across Callahan's fame grew and swallowed it
up when he finally published his construction in-December
1931. rle mathematicians were right. Callahan had not tri-
sectec:: angle. To trisect an angle means to start with any
angle and then divide it into three equal parts to produce
angles one-third the size of the original angle. What Calla-
han had done was the direct opposite. He had started with

;),rgle and then tripled it, producing an angle three times
the size of the original angle. Tripling an angle is an easy
construction that every high school geometry student knows
how to do. Callahan's roundabout way of doing it wasn't
even an improvement over the usual method of solving this
simple problem.

Father Callahan is not the only person who has claimed
that he trisected the angle in recent years. Every few years
somebody else comes out with a new construction. And every
time it turns out to be wrong. Then a new crop of hopeful
amateurs starts trying where the others have failed. Some of
them make the attempt without knowing that the construc-
tion has been proved impossible. But most of them try
because they have heard it is impossible. When they are told
it is impossible, they take it as a challenge. It is as if someone
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said to them, "I dare you to do it." And what person with
courage will not take a dare, especially if he can do it sitting
safely at his desk, using no deadlier weapons than a pencil
and paper and a ruler and compasses?

The reason why so many people keep trying to ,do the
impossible in geometry is because they do not believe any-
thing is really impossible. They have unlimited faith in what
human ingenuity can accomplish. They see that many things
that were impossible for our ancestors are now everyday
occurrences for ,us. We fly through the air in giant planes
that can circle the globe. We erect buildings as tall as moun-
tains. By radio or telephone, we speak to people thousands of
miles away. Through phonograph records and moving
picture sound tracks we can hear the voice) of people who are
dead. All these miracles of human invention have convinced
them that there is no obstacle that science and industry can-
not overcome. We can solve any problem, they think, if we
just work at it hard enough and long enough. This is the
spirit in which the Navy's construction battalions, the Sea-
bees, adopted their famous slogan, "The difficult we do
immediately. The impossible takes a little longer."

The spirit of not backing down before difficulties is a good
thing. Without it mankind would never have climbed from
savagery to civilization. But when it is applied to the problem
of trisecting an angle, it can lead only to wasted effort. There
are some things that are really impossible, and trisecting an
angle with a straight edge and compasses is one of them.

To see why some things are really impossible, let us begin
with a very simple example. Suppose a newspaper, reporting
a baseball game, gave the final score as 81/2 to 3. Everybody
would know immediately that the report was wrong, because
it is impossible to have such a score in baseball. It is impos-
sible because of the rules by which baseball scores are tallied.
Under the rules of the game, the only scores that are possible
are whole numbers. So, when the game is played according
to the rules, no team could ever get a score of 81/9 .



The Fifteen Puzzle

We can find another helpful example of the impossible, in
the famous Fifteen Puzzle which has fascinated young and
old for almost a hundred years. The puzzle consists of a
square frame that has room for sixteen square blocks,
arranged in four rows with four blocks in each row. But there
are only fifteen blocks in the frame, so that there is an empty
space into which a block can fit. The blocks are numbered
from one to fifteen. To play the game, you start with the
blocks arranged in numerical order, with the numbers 1 to 4
in the first row, 5 to 8 in the second row, 9 to 12 in the third
row, 13 to 15 in the last row, and the blank space in the
lower right-hand corner. The object of the game is to move
the blocks around to get some new arrangement of the num-
bers decided on in advance. But the moving must be done
according to certain rules: You may not lift the blocks out of
the frame. You may move the blocks only one at a time by
sliding into the empty space a block that lies right next to it.
And yoU must end up with the blank space in the lower
right-hand corner again.

STARTING POSITION
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YOU CAN GET THIS ....

When you try the puzzle, you soon discover that there are
some arrangements that you can reach without any trouble
at all. But there are other arrangements that you cannot get
no matter how hard you try. You get. into trouble, for
example, if you try to arrange the numbers in reverse order,
with the 15 in the upper left-hand corner, and the blank
space in the lower right-hand corner. You may succeed in
getting the numbers from 15 to 3 in the right positions, but
the last two numbers, the 1 and the 2, stubbornly insist on
taking each other's places. When you fail to arrange the
numbers in reverse order, it doesn't mean that you aren't
smart enough or didn't try hard enough to succeed. You fail
because it is actually impossible to get that arrangement. Just
as the rules of baseball make whole number scores possible
and fractional scores impossible, the rules of this puzzle make
some arrangements possible and other arrangements
impossible to reach.

The fact that there are impossible arrangements for the
Fifteen Puzzle is not as obvious as the fact that fractional
scores are impossible in baseball. But. is easy to prove by a
little careful thinking. The proof is given here as qn example
of the method by which a mathematician can prove that
something is really impossible.
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BUT NOT THIS

To understand the proof we first have to get acquainted
with some simple facts about numbers. Let us notice, to
begin with, that the whole numbers are divided into two
families, the even numbers and the odd numbers. We get the
even numbers by starting with 0 and counting by two's. This
gives us the series of numbers, 0, 2, 4, 6, 8, 10, 12, and so
on. We get the odd numbers by adding 1 to each of the even
numbers. This gives us the series of numbers, 1, 3, 5, 7, 9,
11, 13, and so on. Now we observe these additional facts:

Rule 1: When you add an odd number to an even
number, the result is an odd number. For example, when
you add 3 to 8, the result is 11, an odd number.

Rule 2: When you subtract an odd number from an even
number, the result is an odd number. For example, when
you subtract 3 from 8, the result is 5, an odd number.

Rule 3: When you add an odd number to an odd number,
the result is an even number. For example, when you add 3
to 9, the result is 12, an even number.

Rule 4: When you subtract an odd number from an odd
number, the result is an even number. For example, when
you subtract 3 from 9, the result is 6, an even number.
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Next we notice a simple but important fact about arrange-
ments of numbers. Let us arrange a series of numbers in a
line, from left to right. We shall say a number is before
another number, or precedes it, if it is to the left of that
number. We shall say a number is after another number, or

follows it, if it is to the right of that number. For example, in
the arrangement 1, 3, 2, 5, 4, the 3 is before the 2, and the 3
and 2 both follow the 1.

Now we compare each of the numbers with those that
come after it. Whenever a number is followed by a smaller
number, we say that the pair of numbers forms an inversion.
In the arrangement 1, 3, 2, 5, 4, the 1 is not followed by any
smaller numbers, so it is not part of any inversion. The 3 is
followed by the smaller number 2, so the pair 3, 2 is an
inversion. The pair 5, 4 is another inversion. This
arrangement has two inversions altogether. The arrangement
1, 2, 3, 4, 5 has no inversions, because no number is followed
by a smaller number. The arrangement 5, 4, 3, 2, 1 has
many inversions which we can count up in this way: The 5 is
followed by four smaller numbers, giving us four inversions.
The 4 is followed by three smaller numbers, giving us three
more inversions. The 3 is followed by two smaller numbers,
giving us two more inversions. The 2 is followed by one
smaller number, giving us one more inversion. The total
number of inversions is your plus three plus two plus one,
which adds up to ten inversions.

In any arrangement of numbers, we find the number of
inversions by counting how many smaller numbers follow the
first number in the line, how many smaller numbers follow
the second number, and so on down the line, until we have
the total count. When the numbers from 1 to 15 are
arrangedThi order of size, there are no inversions, so we say
the number of inversions is 0. When the numbers are
arranged in reverse order, the number of inversions is 14 plus
13 plus 12 plus 11 plus 10 plus 9 plus 8 plus 7 plus 6 plus 5
plus 4 plus 3 plus 2 plus 1. Add these numbers up, and we
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find that the reverse arrangement has 105 inversions. Notice
that 105 is an :dd number. This fact is important in the
proof that it is impossible to get this arrangement when we
move the numbers in the Fifteen Puzzle according to the
rules

Now let us examine a simple arrangement of four
numbers, like 8, \3, 2, 10, and see what happens to the
number of inversions if the first number, the 8, is picked up
and placed after the others, so that it becomes the last
number. In the original arrangement, the 8 was before the 3
and 2, forming two inversions. In the new arrangement, the
8 follows the 3 and 2, so these two inversions have been
removed. In the original arrangement, -Ehe -8 was before the
10, and this is not an inversion. In the new arrangement, the
8 follows the 10, so a new inversion has been introduced.
When we put the 8 last, the arrangement loses two inversions
and gains one inversion. The total change in the number of
inversions in this case is the loss of one inversion. Notice that
inversions like 3, 2, which do not involve the number 8, are
not changed, because the 3 and 2 did not change places.

Now let us do the same thing with any arrangement of any
four numbers in a line. In the original arrangement, the first
number is followed by three others. If all three are smaller
than the first number, they form three inversions with the
first number. If only two of them are smaller, and the third
is larger. the two smaller ones form inversions with the 'first
number, while the larger one does not. If only one of them is
smaller, and the other two are larger, the smaller one forms
an inversion with the first number, but the two larger ones
do not. If none of the three numbers are smaller, they form
no inversions with the first number at all. Now, when we
place the first number last, it follows the numbers that it
used to precede. This reverses the order in the pair that it
forms with each of these numbers. As a result, wherever it
formed an inversion in the original arrangement, this inver-
sion is lost. Wherever it formed no inversion in the original

8
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arrangement, an inversion is gained. All the possibilities are
shown in the table below:

ORIGINAL ARRANGEMENT NEW ARRANGEMENT

Inversions 3 Inversions lost 3
Not an inversion 0 Inversions gained 0

Total change: 3 lost
Inversions 2 Inversions lost
Not an inversion 1 Inversions gained 1

Total change: I lost

Inversions 1 Inversions lost 1 \
Not an inversion 2 Inversions gained 2

Total change: I gained
Inversions 0 Inversions lost 0
Not an inversion 3 Inversions gained 3

Total change: 3 gained

So whenever the first of four numbers is placed last, the
change in the number of inversions is a gain of 1 or 3, or a
loss of 1 or 3. But 1 and 3 are odd numbers. So we see that in
each of the four possible cases, an odd number is added to or
subtracted from the number of inversions.

Now we are ready to analyze the Fifteen Puzzle. If we were
permitted to move the blocks in any way we please, we would
be able to get any arrangement of the fifteen numbers in the
frame. All we would have to do is lift the blocks out of the
frame, and then put them back in the arrangement we want.
But we are not free to move the blocks in any way we please.
We must follow the rules of the game. These rules, as we
shall see, make some arrangements impossible to reach.

One rule is that we move the blocks one at a time, by slid-
ing a block into the empty space. A move may be of four
different types. We may slide a block to the left into the
empty space, or we may slide a block to the right into the
empty space. We may also slide a block down into the space
from the line above it, or we may slide a block up into the
space from the line below it. Let us examine the effect that
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each move had on the arrangement of the numbers in the
frame. Although the numbers are arranged in four lines, it is
like an arrangement in one line, because we can think of the
second line as being after the first,, the third line as being
after the second, and the fourth line as being after the third.
Then one number is after another number if it follows it in
the same line, or if it is in one of the later lines. Since we
have a way of judging whether one number is before or after
another, we can count the number of;jnversions in any
arrangement. Now let us see what happens to the number of
inversions whenever we make a move according to the rules.
If we move a block to the right or the left, the order of the
numbers in the frame is not changed. So a move to the left or
right has no effect on the number of inversions. To see the
effect of a move up or down, look at the diagram below.

Suppose we move the 10 into the empty space below it.
Before the move, the 10 is the first of the four numbers, 10,
6, 8, 9. After the move, it becomes the last of these four
numbers. We know already that as a result of this type of
change, the number of inversions is changed by an odd num-
ber. In this case it is decreased by three. Each move up or
down either adds an odd number of inversions, or subtracts
an odd number from the number of inversions.

10
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Now let's figure out the total effect of all the moves we
make when we play the game. We begin with the numbers
arranged in order of size, from 1 to 15. In this arrangement,
the number of inversions is 0, which is an even number. We
can disregard the moves to the right or left, because they do
not chahge the number of inversions. The first up or clown
move acids an odd number to the number of inversions. All
up or clown moves after the first may add or subtract an odd
number. We can keep track of the results by using the four
rules about odd and even numbers that we discovered on
page 6. The first up or down move starts with an even num-
ber of inversions, and adds an odd number, so the result
is an odd number of inversions. The second move up or down
starts with this odd number of inversions, and adds or sub-
tracts an odd number. The result is an even number. The
third move changes it back to an odd number. The number
of inversions keeps changing back and forth from even to
odd, and from odd to even. Notice that after two moves, four
moves, six moves, and so on, the number of inversions is
even. So we have this important rule about the puzzle: The
arrangement of the numbers after an even number of up or
down moves has an even number of inversions.

Another of the rules of the game is that the blank space
must begin in the lower right-hand corner, and it must end
in the lower right-hand corner. This rule is important,
because it places a restriction on the number of up and down
moves we may make. Whenever a block moves down, the
empty space moves up to take its place. Whenever a block
moves up, the empty space moves clown to take its place. So
we can count the number of up or clown moves we make by
counting how many times the empty space moves up or
clown. After all our moves, the empty space ends up where it
started. This means that for every time that it moves up, it
must move clown again in order to get back. So the up and
clown moves come in pairs, with each up move balanced by a
clown move. Then we can count them

11
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count by two's, the result is always an even number. So we
see that the rule that the empty space must end where it
begins forces us to make an even number of up and down
moves. But after an even number of up and down moves, the
number ofsinversions is even. So the only arrangement of the
numbers that we can reach when we follow the rules of the
game is one that has an even number of inversions. This
means that it is impossible to reach arrangements that have
an odd number of inversions. We have seen that the reverse
arrangement, from 15 to 1, has 105 inversions, which is an
odd number. So this arrangement is impossible to get.

The situation can be reversed if we change the beginning
arrangement. If we start with an arrangement that has an
odd number of inversions, then we can reach all other
arrangements that have an odd number of inversions. But
then the positions that have an even number of inversions
become impossible. A recent model of the Fifteen Puzzle is
made out of plastic squares that slide on tracks inside a
square frame. The tracks serve to enforce the rules of the
game, because they prevent any movement of the squares
except sliding. But many young people get around this
restriction by forcing one of the squares off the track, and
then forcing it on again in another position. In this way they
make the impossible arrangements possible. But, at the same
time, they make the possible arrangements impossible, if they
observe the rules of the game once more.

The "64" Puzzle
We can use our knowledge about odd and even numbers to

analyze another problem now, the famous "64" puzzle which
is a favorite with many teachers. If a teacher has some cleri-
cal work to do, and wants to keep her class busy and out of
mischief while she does it, she may offer a bonus Of ten points
to any pupil who finds five odd numbers that add up to 64.
The class usually accepts the challenge and gets to work on
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the problem at once. The teacher is sure that they will not
solve the problem too soon. She is even sure that she will not
have to give anybody the ten-point bonus. To see why, let
us find out what happens when we add a series of odd num-
bers. When we acid the first two odd numbers, the result is
even. When we add the third odd number to this sum, the
result is odd. When we add the fourth odd number the result
is even. When we add the fifth odd number the result is odd.
So, when we add any five odd numbers, the result must be
odd. It is impossible for the result to be even. But 64 is an
even number, so it is impossible for five odd numbers to addle
up to 64. Even if the class works on the problem until every
boy in the class has a beard four feet long, and every girl in
the class is a grandmother, they will never be able to solve it.

The three examples we have examined help us understand
why there are some things that are really impossible. When-
ever we are required to do things according to definite rules,
the rules put a restriction on the kind of results we can get.
Results which are not permitted by the rules are impossible to
get, as long as we follow the rules. In baseball, the rules of
scoring make a fractional score impossible. In the Fifteen
Puzzle, the rules about how to begin and end, and how to
move the squares, make an arrangement with an odd
number of inversions impossible. In the "64" puzzle, the rule
'that we use an odd number of odd numbers makes it impos-
sible to get an even number as the sum. By studying the con-
sequences of the rules of a game, it is possible to prove that
certain results are impossible. This is what has happened
with the problem of trisecting an angle.

Over two thousand years ago, Greek mathematicians
found that they could do many constructions by using only
two simple instruments: a straight edge, for drawing straight
lines between points, and compasses for drawing circles.
They could use these instruments, for example, to bisect a
line, Or divide it into two equal .parts. The method is shown
in the series of drawings on page 14. The two circles that
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LW TO BISECT A LINE

arc shown in this drawing both have the same radius. They
also knew how to trisect a line, or divide it into three equal
parts. The method used is shown in the drawings on page
15. AB is the line to be trisected. Another line is drawn

14



1 A

2 A.

3

4

B

HOW TO TRISECT A LINE

from A, and the compasses are used to cut off three equal
pieces on it. The last point of division, E, is joined to B,
forming an angle at E. With E as center, an arc of a circle is
drawn, cutting the sides of the angle at F and G. The same

15



radius is used to make arcs that have C and D as centers.
Then using FG as radius, e`qual pieces are cut off on all three
arcs. This locates the points./ and K. When the lines DJ and
CK are drawn, they trisect the line AB.

The Greek mathematicians also found it easy to bisect
an angle. The method is shown in the drawing below. To
bisect angle ABC, first an arc is drawn with B as center. This
arc cuts the sides of the angle at D and E. Then with D and
E as centers two arcs are drawn with equal radii. These arcs
cross each other at F. When the line BF is drawn, it bisects

HOW TO BISECT AN ANGLE

the angle. Since they found it so easy to bisect the angle, they
naturally tried to trisect it, too. But then they ran into
trouble. They never succeeded: as long as they used only a
straight edge or compasses. Another way of saying this is that
they never succeeded as long as they drew only straight lines
and circles. They did succeed in trisecting the angle by using
other curves that are more complicated than the circle. But
they felt as though they were cheating when they did. They
thought it should be possible to manage with straight lines
and circles alone, so they kept trying. This is how the prob-
lem of trisecting an angle arose. Notice that the problem is

16
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not merely to divide an angle into three equal parts. The
Greeks solved that problem a long time ago with their special
curves. The problem is to do it in a particular way, using
only a straight edge and compasses. This makes the problem
like a game that must be played according to definite rules.

For thousands of years mathematicians tried to trisect an
angle according to the rules. They did not succeed. Their
failure led some to suspect that the construction might be
impossible. To check their suspicions they began to investi-
gate the meaning of the rule that only a straight edge and
compasses may be used. To explore its meaning, they made
use of a discovery by the great French philosopher and
mathematician Descartes. Descartes had found that every
geometry, problem can be turned into an algebra problem.
Then, instead of working with lines and curves, you work
with numbers and equations. This led the German mathema-
tician, Gauss, and the American mathematician Wantzel to
ask what kind of equation belongs to a construction in which
you use only straight lines and circles. The answer they found
to this question makes it possible to identify which construc-
tions are possible and which are impossible.

They found first that the equation must belong to a family
of equations known as algebraic equations, in which powers of
the unknown are multiplied by whole numbers and added or
subtracted to give zero. A typical equation of this family looks
like this: 4x5 3x2 + 2x + 7 = 0. The highest power of the
unknown that appears in the equation is called the degree of
the equation. The degree of the equation shown above is 5.
They found, secondly, that if a construction can be carried
out by means of a straight edge and compasses, the degree of
its equation has to he a power of 2. The powers of 2 are the
numbers we get when we multiply 1 repeatedly by 2. These
numbers are 1, 2, 4, 8, 16, and so on. The degree of the
equation that belongs to the problem of trisecting an angle
happens to be 3. Since 3 is not a power of 2, the construction
is impossible. The proof of this result was first published by
Wantzel in 1837.

17

20



Doubling the Cube

Wantzel's proof also disposed of another famous problem
that has come down to us from ancient times; that of. dou-
bling a cube. This problem has a curious history, because it
had its origin in an epidemic of typhoid fever. The fever
struck the city of Athens in the year 430 B.C. Thousands of
people were sick. Many died, and More were dying. The
terrified inhabitants turned to their gods for help. They sent
their officials to Delos to get the advice of the oracle at the
temple of Apollo. The oracle was a priest who was supposed
to have special powers of seeing into the future. The oracle

told the Athenians that Apollo would help them if they
would double the altar that stood in the temple. The altar
was a block of stone cut in the shape of a cube. The officials

measured the altar and ordered a new one made with edges
twice as long as the edges of the old one. After the new altar
was installed, the epidemic grew worse. The officials hurried
back to Delos to find out what they should do now. Again the
oracle advised them that the plague would leave them if they
would double the old altar of Apollo. They thought they had
already clone so, but evidently Apollo was displeased, so they
decided that they must have done something wrong. Now
they turned to their mathematicians for advice. What did the
oracle mean when he told them to double the altar? The
mathematicians decided that Apollo wanted them to double
the volume of the altar, not the length of its edges. But to
make an altar with double the volume, and still shaped like a
cube, it was necessary to find out first how long its edge
should be. So, to save themselves from the fever, the unfor-
tunate people of Athens had to solve this mathematical prob-
lem: Starting with anv cube, construct the edge of a cube
that has double the volume of the original cube. Naturally,
the. Athenian mathematicians tried to solve it with their
favorite instruments, the straight edge and compasses. They
failed. Fortunately Apollo relented, and the epidemic came
to an end anyhow. It is a good thing that the ending of the
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epidemic did not depend on their solving the problem. For
over two thousand years other mathematicians also tried to
solve the problem. None of them succeeded.

In 1837, Wantzel's proof showed why. The equation that
belongs to the problem of doubling the volume of a cube is
X3 - 2 = 0. The degree of this equation is 3. Since 3 is not a
power of 2, it is impossible to solve the problem by means of
a straight edge and compasses.

Squaring the Circle

There is another famous geometric construction that de-
fied solution for thousands of years. This problem, usually
referred to as "squaring the circle," grew out of early
attempts to measure the area of a circle. In the year 1650
B.C., an. Egyptian mathematician gave these directions for
doing it To transform a circle into a square of equal area,
cut off one-ninth of the diameter of the circle. "The square
on the remainder," he said, "will equal the area of the
circle." Later mathematicians were not satisfied with these
-iirections. The square that you get by this method is almost
equal to the circle, but not quite. So they tried to find a
method that would be exact. Stated in the language of
geometry, their problem was to start with any circle, and,
using a straight edge and compasses, to construct the 5ide of
a square that has the same area. The work of Gauss and
Wantzel showed that this is possible only if the number 7T,

which is needed to calculate the area of a circle, can satisfy
an algebraic equation whose degree i a power of 2. Their
work paved the way for the final solution of the problem. As
in the case of trisecting an angle and doubling a cube, the
problem was solved by proving that the construction with
straight edge arid compasses is impossible. This was done in
1882, when Lindemann showed that the number rr cannot
satisfy any algebraic equation at all, so it certainly could not
satisfy one whose degree is a power of 2.
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Perpetual Motion Machines

Trisecting an angle, doubling a cube, and squaring a
circle turned out to be impossible to do because of the rule
which restricted the way in which people tried to do them.
But, since men had made up the rule, they were also free to
change the rule. Once they permitted the use of other instru-
ments besides a straight-edge and compasses, the construc-
tions become possible, and have been carried out by many
different methods. But there is another famous construction
problem that cannot be tackled in the same way. This con-
struction, too, is impossible because of the rules that govern
attempts to do it. But in this case we cannot change the
rules. They are not man-made rules. They are rules of
nature. The problem is that of building a perpetual motion
machine.

We build machines to help us in our work. But machines
are hungry servants. We have to feed them in order to keep
them working. Water wheels must be fed flowing water.
Steam engines have to be fed coal. Electric motors have to be
fed an electric current. Feeding the machines takes effort, so
the machines don't free us entirely from the burden of work.
This weakness of machines was very clistrubing to early
inventors. They kept improving the machines so that they
would deliver more work with less human effort. Then some
inventors got the idea of making a perfect machine that
would require no human effort at all. They tried to design a
machine which would need only to be started. Then, after
that it would keep moving all by itself, forever.

The earliest design we know of for a perpetual motion
machine was published in the thirteenth century by Vilard de
Honnecourt. The drawing below shows what his machine
was like. A wooden frame supported a large wheel with four
spokes. Seven hammers were hinged to the rim of the wheel
so they could swing freely. When the wheel was given a turn,
the hammer at the top was carried around with it and fell.
The force of the fall was supposed to give the wheel another
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push, so that the next hammer would be turned far enough
to fall. In this way, each hammer, as it fell, would help to
turn the wheel. Since another hammer always came to the
top to take the place of the one that just fell, this was
supposed to go on forever.

A design using the same principle is found among the
sketches left by Leonardo da Vinci, the famous artist and
inventor who lived from 1452 to 1519. Leonardo also used
falling weights, but he put them inside the wheel instead of
attaching them to the rim. In his design, the spokes of the
wheel are curved blades that serve as tracks for a rolling ball.
The ball starts near the hub of the wheel, and, as it falls, it
rolls out toward the rim. Meanwhile the weight of the falling
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ball turns the wheel. But as the wheel turns, the blade at the
bottom scoops its ball up again. The ball gradually rolls back
towards the hub, and then is ready to fall all over again. In
this machine the inside of the wheel would have to be en-
closed between two flat sheets to keep the balls from falling
out.

As the years went by, perpetual motion machines became
more and more complicated. They were made with gears and
springs. Some used magnets. Some were chemically operated.
Others replaced falling weights by falling water. A typical
water machine that was supposed to move by itself forever is
shown in the next drawing. The main parts of this machine
are the water wheel, the spiral pipe that is inside the slop-
ing cylinder, and a tank full of water. The machine was
started by using the crank to turn the wheel. The teeth on
the turning wheel meshed with a gear on the sloping cylinder
and made the cylinder turn. As the cylinder turned, the spiral
pipe that was in it scooped water out of the tank, and then,
in turn after turn, gradually raised the water to the top. Here
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it flowed into a reservoir which fed a pipe that poured water
over the wheel. Froth this point on the machine was supposed
to work by itself, with the force for turning the wheel being
supplied by the falling water.

The designs were many, and the systems were different,
but all the perpetual motion machines had one thing in
common. None of them would work. Growing experience
with machines, and the development of the science of physics
uncovered the reason why. The working of every machine is
governed by an important rule. This rule is a law of nature
known as the law of conservation of energy. The law says that
energy cannot be created or destroyed. This means that the
energy in a system cannot change in amount. It can only
change inform. Energy exists in many different forms or dis-
guises. Sometimes we can see it as light. Sometimes we can



feel it as heat. At times it appears as motion. But it may also
be stored or hidden in various ways. It may be the chemical
energy hidden in coal, or the electrical energy stored in a
condenser. It may also be lurking in the position of a body.
For example, when we lift a ball, we use up energy in the
form of the motion that lifts it. This energy is stored in the
raised position of the ball. When the ball falls, it releases the
energy again as motion. But the energy it releases is exactly
the same as the energy that was stored in it in the first place.
The energy released is just enough to raise the ball again to
the same height, provided that none of it is drawn off for
some other purpose.. But here we find the reason why the
machines that used falling weights could not go on forever.
The moving parts of a machine rub against each other, and
the rubbing or friction changes some of the energy of motion
into heat. This change of motion into heat is a leak in the
machine's energy supply. Because of this leak, some of the
energy released by a falling ball is lost. But then the energy
that is left is not enough to raise the ball to the same height
again. If the machine is made to do any work for us, more of
the machine's energy is drawn off to do this work. So unless

more energy is fed into the machine, its energy supply is
steadily lost. The machine must slow down, and eventually
stop. The construction of a perpetual motion machine is
made impossible by the law of the conservation of energy.

Several hundred years ago it made sense for people to try
to trisect an angle or make a perpetual motion machine. At
that time they were merely trying to do things that no one
had been able to do yet. And the fact that no one had
succeeded in doing them before did not mean that they
would never be done. But now, after it has been proved that
these things are impossible to do, it is a foolish waste of effort
to try. But that doesn't seem to stop people from trying, or
even believing that they have succeeded. Sometimes, as in the
case of Father Callahan, they even get the public to believe
that they have clone something great. But the truth reaches
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the public sooner or later, and the only ones who remain
fooled are those who insist on trying to do what has been
proved impossible.
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